CHAP.common.processor
¶
File : processor.py
Author : Valentin Kuznetsov
Module Contents¶
Classes¶
A Processor to show and return an animation. |
|
A Processor to process multiple sets of input data via asyncio module. |
|
A Processor to binarize a dataset. |
|
A Processor to construct a baseline for a dataset. |
|
A Processor to plot an image (slice) from a NeXus object. |
|
A processor for integrating 2D data with pyFAI. |
|
A processor that takes a map and integration configuration and returns a NeXus NXprocesss object containing a map of the integrated detector data requested. |
|
A Processor that takes a map configuration and returns a NeXus NXentry object representing that map’s metadata and any scalar-valued raw data requested by the supplied map configuration. |
|
A test MPI Processor. |
|
A Processor that collects the distributed worker data from MPIMapProcessor on the root node |
|
A Processor that applies a parallel generic sub-pipeline to a map configuration. |
|
A Processor that applies a parallel generic sub-pipeline to a map configuration by spawning workers processes. |
|
A Processor to convert the default plottable data in a NeXus
object into a |
|
A Processor to convert the default plottable data in a
NeXus object into an |
|
A Processor to simply print the input data to stdout and return the original input data, unchanged in any way. |
|
Processor to azimuthally integrate one or more frames of 2d detector data using the pyFAI package. |
|
A Processor to return a map of raw derector data in a NeXus NXroot object. |
|
A Processor to compute a map of sample strains by fitting Bragg peaks in 1D detector data and analyzing the difference between measured peak locations and expected peak locations for the sample measured. |
|
Processor to set up and return an “empty” NeXus representation of a structured dataset. This representation will be an instance of a NeXus NXdata object that has: |
|
Processor to fill in part(s) of a NeXus NXdata representing a structured dataset that’s already been written to a NeXus file. |
|
Transform a NeXus NXdata object into a list of dictionaries. Each dictionary represents a single data point in the coordinate space of the dataset. The keys are the names of the signals and axes in the dataset, and the values are a single scalar value (in the case of axes) or the value of the signal at that point in the coordinate space of the dataset (in the case of signals – this means that values for signals may be any shape, depending on the shape of the signal itself). |
|
A Processor to convert the data in an |
|
A Processor to convert the data in an |
|
A Processor to sum the data in a NeXus NXobject, given a set of nxpaths |
API¶
- class CHAP.common.processor.AnimationProcessor¶
Bases:
CHAP.Processor
A Processor to show and return an animation.
Initialization
Constructor of PipelineItem class
- process(data, num_frames, vmin=None, vmax=None, axis=None, interval=1000, blit=True, repeat=True, repeat_delay=1000, interactive=False)¶
Show and return an animation of image slices from a dataset contained in
data
.- Parameters:
data (list[PipelineData]) – Input data.
num_frames (int) – Number of frames for the animation.
vmin (float) – Minimum array value in image slice, default to
None
, which uses the actual minimum value in the slice.vmax (float) – Maximum array value in image slice, default to
None
, which uses the actual maximum value in the slice.axis (Union[int, str], optional) – Axis direction or name of the image slices, defaults to
0
interval (int, optional) – Delay between frames in milliseconds (only used when interactive=True), defaults to
1000
blit (bool, optional) – Whether blitting is used to optimize drawing, default to
True
repeat (bool, optional) – Whether the animation repeats when the sequence of frames is completed (only used when interactive=True), defaults to
True
repeat_delay (int, optional) – Delay in milliseconds between consecutive animation runs if repeat is
True
(only used when interactive=True), defaults to1000
interactive (bool, optional) – Allows for user interactions, defaults to
False
.
- Returns:
The matplotlib animation.
- Return type:
matplotlib.animation.ArtistAnimation
- class CHAP.common.processor.AsyncProcessor(mgr)¶
Bases:
CHAP.Processor
A Processor to process multiple sets of input data via asyncio module.
- Variables:
mgr – The
Processor
used to process every set of input data.
Initialization
Constructor of PipelineItem class
- process(data)¶
Asynchronously process the input documents with the
self.mgr
Processor
.- Parameters:
data – Input data documents to process.
- class CHAP.common.processor.BinarizeProcessor¶
Bases:
CHAP.Processor
A Processor to binarize a dataset.
Initialization
Constructor of PipelineItem class
- process(data, nxpath='', interactive=False, method='CHAP', num_bin=256, axis=None, remove_original_data=False)¶
Show and return a binarized dataset from a dataset contained in
data
. The dataset must either be of typenumpy.ndarray
or a NeXus NXobject object with a default path to a NeXus NXfield object.- Parameters:
data (list[PipelineData]) – Input data.
nxpath (str, optional) – The relative path to a specific NeXus NXentry or NeXus NXdata object in the NeXus file tree to read the input data from (ignored for Numpy or NeXus NXfield input datasets), defaults to
''
interactive (bool, optional) – Allows for user interactions (ignored for any method other than
'manual'
), defaults toFalse
.method (Literal[‘CHAP’, ‘manual’, ‘otsu’, ‘yen’, ‘isodata’, ‘minimum’]) – Binarization method, defaults to
'CHAP'
(CHAP’s internal implementation of Otzu’s method).num_bin (int, optional) – The number of bins used to calculate the histogram in the binarization algorithms (ignored for method =
'manual'
), defaults to256
.axis (int, optional) – Axis direction of the image slices (ignored for any method other than
'manual'
), defaults toNone
remove_original_data – Removes the original data field (ignored for Numpy input datasets), defaults to
False
.
- Raises:
ValueError – Upon invalid input parameters.
- Returns:
The binarized dataset with a return type equal to that of the input dataset.
- Return type:
Union[numpy.ndarray, nexusformat.nexus.NXobject]
- class CHAP.common.processor.ConstructBaseline¶
Bases:
CHAP.Processor
A Processor to construct a baseline for a dataset.
Initialization
Constructor of PipelineItem class
- process(data, mask=None, tol=1e-06, lam=1000000.0, max_iter=20, save_figures=False, outputdir='.', interactive=False)¶
Construct and return the baseline for a dataset.
- Parameters:
data (list[PipelineData]) – Input data.
mask (array-like, optional) – A mask to apply to the spectrum before baseline construction, default to
None
.tol (float, optional) – The convergence tolerence, defaults to
1.e-6
.lam (float, optional) – The &lambda (smoothness) parameter (the balance between the residual of the data and the baseline and the smoothness of the baseline). The suggested range is between 100 and 10^8, defaults to
10^6
.max_iter (int, optional) – The maximum number of iterations, defaults to
20
.save_figures (bool, optional) – Save .pngs of plots for checking inputs & outputs of this Processor, defaults to False.
outputdir (str, optional) – Directory to which any output figures will be saved, defaults to ‘.’
interactive (bool, optional) – Allows for user interactions, defaults to False.
- Returns:
The smoothed baseline and the configuration.
- Return type:
numpy.array, dict
- static construct_baseline(y, x=None, mask=None, tol=1e-06, lam=1000000.0, max_iter=20, title=None, xlabel=None, ylabel=None, interactive=False, filename=None)¶
Construct and return the baseline for a dataset.
- Parameters:
y (numpy.array) – Input data.
x (array-like, optional) – Independent dimension (only used when interactive is
True
of when filename is set), defaults toNone
.mask (array-like, optional) – A mask to apply to the spectrum before baseline construction, default to
None
.tol (float, optional) – The convergence tolerence, defaults to
1.e-6
.lam (float, optional) – The &lambda (smoothness) parameter (the balance between the residual of the data and the baseline and the smoothness of the baseline). The suggested range is between 100 and 10^8, defaults to
10^6
.max_iter (int, optional) – The maximum number of iterations, defaults to
20
.xlabel (str, optional) – Label for the x-axis of the displayed figure, defaults to
None
.title (str, optional) – Title for the displayed figure, defaults to
None
.ylabel (str, optional) – Label for the y-axis of the displayed figure, defaults to
None
.interactive (bool, optional) – Allows for user interactions, defaults to False.
filename (str, optional) – Save a .png of the plot to filename, defaults to
None
, in which case the plot is not saved.
- Returns:
The smoothed baseline and the configuration.
- Return type:
numpy.array, dict
- class CHAP.common.processor.ImageProcessor¶
Bases:
CHAP.Processor
A Processor to plot an image (slice) from a NeXus object.
Initialization
Constructor of PipelineItem class
- process(data, vmin=None, vmax=None, axis=0, index=None, coord=None, interactive=False, save_figure=True, outputdir='.', filename='image.png')¶
Plot and/or save an image (slice) from a NeXus NXobject object with a default data path contained in
data
and return the NeXus NXdata data object.- Parameters:
data (list[PipelineData]) – Input data.
vmin (float) – Minimum array value in image slice, default to
None
, which uses the actual minimum value in the slice.vmax (float) – Maximum array value in image slice, default to
None
, which uses the actual maximum value in the slice.axis (Union[int, str], optional) – Axis direction or name of the image slice, defaults to
0
index (int, optional) – Array index of the slice of data to plot, defaults to
None
coord (Union[int, float], optional) – Coordinate value of the slice of data to plot, defaults to
None
interactive (bool, optional) – Allows for user interactions, defaults to
False
.save_figure (bool, optional) – Save a .png of the image, defaults to
True
.outputdir (str, optional) – Directory to which any output figure will be saved, defaults to
'.'
filename (str, optional) – Image filename, defaults to
"image.png"
.
- Returns:
The input data object.
- Return type:
nexusformat.nexus.NXdata
- class CHAP.common.processor.IntegrationProcessor¶
Bases:
CHAP.Processor
A processor for integrating 2D data with pyFAI.
Initialization
Constructor of PipelineItem class
- process(data)¶
Integrate the input data with the integration method and keyword arguments supplied in
data
and return the results.- Parameters:
data (list[PipelineData]) – Input data, containing the raw data, integration method, and keyword args for the integration method.
- Returns:
Integrated raw data.
- Return type:
pyFAI.containers.IntegrateResult
- class CHAP.common.processor.IntegrateMapProcessor¶
Bases:
CHAP.Processor
A processor that takes a map and integration configuration and returns a NeXus NXprocesss object containing a map of the integrated detector data requested.
Initialization
Constructor of PipelineItem class
- process(data)¶
Process the output of a
Reader
that contains a map and integration configuration and return a NeXus NXprocess object containing a map of the integrated detector data requested.- Parameters:
data (list[PipelineData]) – Input data, containing at least one item with the value
'common.models.map.MapConfig'
for the'schema'
key, and at least one item with the value'common.models.integration.IntegrationConfig'
for the'schema'
key.- Returns:
Integrated data and process metadata.
- Return type:
nexusformat.nexus.NXprocess
- get_nxprocess(map_config, integration_config)¶
Use a
MapConfig
andIntegrationConfig
to construct a NeXus NXprocess object.- Parameters:
map_config (common.models.map.MapConfig) – A valid map configuration..
integration_config (common.models.integration.IntegrationConfig) – A valid integration configuration.
- Returns:
The integrated detector data and metadata.
- Return type:
nexusformat.nexus.NXprocess
- class CHAP.common.processor.MapProcessor¶
Bases:
CHAP.Processor
A Processor that takes a map configuration and returns a NeXus NXentry object representing that map’s metadata and any scalar-valued raw data requested by the supplied map configuration.
Initialization
Constructor of PipelineItem class
- process(data, config=None, detector_names=None, num_proc=1, comm=None, inputdir=None)¶
Process the output of a
Reader
that contains a map configuration and returns a NeXus NXentry object representing the map.- Parameters:
data (list[PipelineData]) – Result of
Reader.read
where at least one item has the value'common.models.map.MapConfig'
for the'schema'
key.config (dict, optional) – Initialization parameters for an instance of common.models.map.MapConfig, defaults to
None
.detector_names (Union(int, str, list[int], list[str]), optional) – Detector names/prefixes to include raw data for in the returned NeXus NXentry object, defaults to
None
.num_proc (int, optional) – Number of processors used to read map, defaults to
1
.
- Returns:
Map data and metadata.
- Return type:
nexusformat.nexus.NXentry
- _get_nxentry(map_config, detector_names, data, independent_dimensions, all_scalar_data)¶
Use a
MapConfig
to construct a NeXus NXentry object.- Parameters:
map_config (common.models.map.MapConfig) – A valid map configuration.
detector_names (list[str]) – Detector names to include raw data for in the returned NeXus NXentry object, defaults to
None
.data (numpy.ndarray) – The map’s raw data.
independent_dimensions (numpy.ndarray) – The map’s independent coordinates.
all_scalar_data (numpy.ndarray) – The map’s scalar data.
- Returns:
The map’s data and metadata contained in a NeXus structure.
- Return type:
nexusformat.nexus.NXentry
- _read_raw_data_edd(map_config, detector_indices, comm, num_scan, offset)¶
Read the raw EDD data for a given map configuration.
- Parameters:
map_config (common.models.map.MapConfig) – A valid map configuration.
detector_indices (list[int]) – Indices to the corresponding detector names.
- Returns:
The map’s raw data, independent dimensions and scalar data
- Return type:
numpy.ndarray, numpy.ndarray, numpy.ndarray
- _read_raw_data(map_config, detector_names, comm, num_scan, offset)¶
Read the raw data for a given map configuration.
- Parameters:
map_config (common.models.map.MapConfig) – A valid map configuration.
detector_names (list[str]) – Detector names to include raw data for in the returned NeXus NXentry object, defaults to
None
.
- Returns:
The map’s raw data, independent dimensions and scalar data
- Return type:
numpy.ndarray, numpy.ndarray, numpy.ndarray
- class CHAP.common.processor.MPITestProcessor¶
Bases:
CHAP.Processor
A test MPI Processor.
Initialization
Constructor of PipelineItem class
- process(data, sub_pipeline={})¶
- class CHAP.common.processor.MPICollectProcessor¶
Bases:
CHAP.Processor
A Processor that collects the distributed worker data from MPIMapProcessor on the root node
Initialization
Constructor of PipelineItem class
- process(data, comm, root_as_worker=True)¶
- class CHAP.common.processor.MPIMapProcessor¶
Bases:
CHAP.Processor
A Processor that applies a parallel generic sub-pipeline to a map configuration.
Initialization
Constructor of PipelineItem class
- process(data, sub_pipeline={})¶
- class CHAP.common.processor.MPISpawnMapProcessor¶
Bases:
CHAP.Processor
A Processor that applies a parallel generic sub-pipeline to a map configuration by spawning workers processes.
Initialization
Constructor of PipelineItem class
- process(data, num_proc=1, root_as_worker=True, collect_on_root=True, sub_pipeline={})¶
- class CHAP.common.processor.NexusToNumpyProcessor¶
Bases:
CHAP.Processor
A Processor to convert the default plottable data in a NeXus object into a
numpy.ndarray
.Initialization
Constructor of PipelineItem class
- process(data)¶
Return the default plottable data signal in a NeXus object contained in
data
as annumpy.ndarray
.- Parameters:
data (nexusformat.nexus.NXobject) – Input data.
- Raises:
ValueError – If
data
has no default plottable data signal.- Returns:
The default plottable data signal.
- Return type:
numpy.ndarray
- class CHAP.common.processor.NexusToXarrayProcessor¶
Bases:
CHAP.Processor
A Processor to convert the default plottable data in a NeXus object into an
xarray.DataArray
.Initialization
Constructor of PipelineItem class
- process(data)¶
Return the default plottable data signal in a NeXus object contained in
data
as anxarray.DataArray
.- Parameters:
data (nexusformat.nexus.NXobject) – Input data.
- Raises:
ValueError – If metadata for
xarray
is absent fromdata
- Returns:
The default plottable data signal.
- Return type:
xarray.DataArray
- class CHAP.common.processor.PrintProcessor¶
Bases:
CHAP.Processor
A Processor to simply print the input data to stdout and return the original input data, unchanged in any way.
Initialization
Constructor of PipelineItem class
- process(data)¶
Print and return the input data.
- Parameters:
data (object) – Input data.
- Returns:
data
- Return type:
object
- class CHAP.common.processor.PyfaiAzimuthalIntegrationProcessor¶
Bases:
CHAP.Processor
Processor to azimuthally integrate one or more frames of 2d detector data using the pyFAI package.
Initialization
Constructor of PipelineItem class
- process(data, poni_file, npt, mask_file=None, integrate1d_kwargs=None, inputdir='.')¶
Azimuthally integrate the detector data provided and return the result as a dictionary of numpy arrays containing the values of the radial coordinate of the result, the intensities along the radial direction, and the poisson errors for each intensity spectrum.
- Parameters:
data (Union[PipelineData, list[np.ndarray]]) – Detector data to integrate.
poni_file (str) – Name of the pyFAI PONI file containing the detector properties pyFAI needs to perform azimuthal integration.
npt (int) – Number of points in the output pattern.
mask_file – A file to use for masking the input data.
integrate1d_kwargs (Optional[dict]) – Optional dictionary of keyword arguments to use with
pyFAI.azimuthalIntegrator.AzimuthalIntegrator.integrate1d
. Defaults toNone
.
- Type:
str
- Returns:
Azimuthal integration results as a dictionary of numpy arrays.
- class CHAP.common.processor.RawDetectorDataMapProcessor¶
Bases:
CHAP.Processor
A Processor to return a map of raw derector data in a NeXus NXroot object.
Initialization
Constructor of PipelineItem class
- process(data, detector_name, detector_shape)¶
Process configurations for a map and return the raw detector data data collected over the map.
- Parameters:
data (list[PipelineData]) – Input map configuration.
detector_name (str) – The detector prefix.
detector_shape (list) – The shape of detector data for a single scan step.
- Returns:
Map of raw detector data.
- Return type:
nexusformat.nexus.NXroot
- get_config(data)¶
Get instances of the map configuration object needed by this
Processor
.- Parameters:
data (list[PipelineData]) – Result of
Reader.read
where at least one item has the value'common.models.map.MapConfig'
for the'schema'
key.- Raises:
Exception – If a valid map config object cannot be constructed from
data
.- Returns:
A valid instance of the map configuration object with field values taken from
data
.- Return type:
- get_nxroot(map_config, detector_name, detector_shape)¶
Get a map of the detector data collected by the scans in
map_config
. The data will be returned along with some relevant metadata in the form of a NeXus structure.- Parameters:
map_config (common.models.map.MapConfig) – The map configuration.
detector_name (str) – The detector prefix.
detector_shape (list) – The shape of detector data for a single scan step.
- Returns:
A map of the raw detector data.
- Return type:
nexusformat.nexus.NXroot
- class CHAP.common.processor.StrainAnalysisProcessor¶
Bases:
CHAP.Processor
A Processor to compute a map of sample strains by fitting Bragg peaks in 1D detector data and analyzing the difference between measured peak locations and expected peak locations for the sample measured.
Initialization
Constructor of PipelineItem class
- process(data)¶
Process the input map detector data & configuration for the strain analysis procedure, and return a map of sample strains.
- Parameters:
data (list[PipelineData]) – Results of
MutlipleReader.read
containing input map detector data and strain analysis configuration- Returns:
A map of sample strains.
- Return type:
xarray.Dataset
- get_config(data)¶
Get instances of the configuration objects needed by this
Processor
.- Parameters:
data (list[PipelineData]) – Result of
Reader.read
where at least one item has the value'StrainAnalysisConfig'
for the'schema'
key.- Raises:
Exception – If valid config objects cannot be constructed from
data
.- Returns:
A valid instance of the configuration object with field values taken from
data
.- Return type:
- class CHAP.common.processor.SetupNXdataProcessor¶
Bases:
CHAP.Processor
Processor to set up and return an “empty” NeXus representation of a structured dataset. This representation will be an instance of a NeXus NXdata object that has:
A NeXus NXfield entry for every coordinate/signal specified.
nxaxes
that are the NeXus NXfield entries for the coordinates and contain the values provided for each coordinate.NeXus NXfield entries of appropriate shape, but containing all zeros, for every signal.
Attributes that define the axes, plus any additional attributes specified by the user.
This
Processor
is most useful as a “setup” step for constucting a representation of / container for a complete dataset that will be filled out in pieces later byUpdateNXdataProcessor
.Examples of use in a
Pipeline
configuration:With inputs from a previous
PipelineItem
specifically written to provide inputs to thisProcessor
:config: inputdir: /rawdata/samplename outputdir: /reduceddata/samplename pipeline: - edd.SetupNXdataReader: filename: SpecInput.txt dataset_id: 1 - common.SetupNXdataProcessor: nxname: samplename_dataset_1 - common.NexusWriter: filename: data.nxs
With inputs provided directly though the optional arguments:
config: outputdir: /reduceddata/samplename pipeline: - common.SetupNXdataProcessor: nxname: your_dataset_name coords: - name: x values: [0.0, 0.5, 1.0] attrs: units: mm yourkey: yourvalue - name: temperature values: [200, 250, 275] attrs: units: Celsius yourotherkey: yourothervalue signals: - name: raw_detector_data shape: [407, 487] attrs: local_name: PIL11 foo: bar - name: presample_intensity shape: [] attrs: local_name: a3ic0 zebra: fish attrs: arbitrary: metadata from: users goes: here - common.NexusWriter: filename: data.nxs
Initialization
Constructor of PipelineItem class
- process(data, nxname='data', coords=[], signals=[], attrs={}, data_points=[], extra_nxfields=[], duplicates='overwrite')¶
Return a NeXus NXdata object that has the requisite axes and NeXus NXfield entries to represent a structured dataset with the properties provided. Properties may be provided either through the
data
argument (from an appropriatePipelineItem
that immediately preceeds this one in aPipeline
), or through thecoords
,signals
,attrs
, and/ordata_points
arguments. If any of the latter are used, their values will completely override any values for these parameters found fromdata.
- Parameters:
data (list[PipelineData]) – Data from the previous item in a
Pipeline
.nxname (str, optional) – Name for the returned NeXus NXdata object. Defaults to
'data'
.coords (list[dict[str, object]], optional) – List of dictionaries defining the coordinates of the dataset. Each dictionary must have the keys
'name'
and'values'
, whose values are the name of the coordinate axis (a string) and all the unique values of that coordinate for the structured dataset (a list of numbers), respectively. A third item in the dictionary is optional, but highly recommended:'attrs'
may provide a dictionary of attributes to attach to the coordinate axis that assist in in interpreting the returned NeXus NXdata representation of the dataset. It is strongly recommended to provide the units of the values along an axis in theattrs
dictionary. Defaults to [].signals (list[dict[str, object]], optional) – List of dictionaries defining the signals of the dataset. Each dictionary must have the keys
'name'
and'shape'
, whose values are the name of the signal field (a string) and the shape of the signal’s value at each point in the dataset (a list of zero or more integers), respectively. A third item in the dictionary is optional, but highly recommended:'attrs'
may provide a dictionary of attributes to attach to the signal fieldthat assist in in interpreting the returned NeXus NXdata representation of the dataset. It is strongly recommended to provide the units of the signal’s valuesattrs
dictionary. Defaults to [].attrs (dict[str, object], optional) – An arbitrary dictionary of attributes to assign to the returned NeXus NXdata object. Defaults to {}.
data_points (list[dict[str, object]], optional) – A list of data points to partially (or even entirely) fil out the “empty” signal NeXus NXfield’s before returning the NeXus NXdata object. Defaults to [].
extra_nxfields (list[dict[str, object]], optional) – List “extra” NeXus NXfield’s to include that can be described neither as a signal of the dataset, not a dedicated coordinate. This paramteter is good for including “alternate” values for one of the coordinate dimensions – the same coordinate axis expressed in different units, for instance. Each item in the list shoulde be a dictionary of parameters for the
nexusformat.nexus.NXfield
constructor. Defaults to[]
.duplicates (Literal['overwrite', 'block']) – Behavior to use if any new data points occur at the same point in the dataset’s coordinate space as an existing data point. Allowed values for
duplicates
are:'overwrite'
and'block'
. Defaults to'overwrite'
.
- Returns:
A NeXus NXdata object that represents the structured dataset as specified.
- Return type:
nexusformat.nexus.NXdata
- add_data_point(data_point)¶
Add a data point to this dataset.
Validate
data_point
.Append
data_point
toself._data_points
.Update signal
NXfield
s inself.nxdata
.
- Parameters:
data_point (dict[str, object]) – Data point defining a point in the dataset’s coordinate space and the new signal values at that point.
- Returns:
None
- validate_data_point(data_point)¶
Return
True
ifdata_point
occurs at a valid point in this structured dataset’s coordinate space,False
otherwise. Also validate shapes of signal values and add NaN values for any missing signals.- Parameters:
data_point (dict[str, object]) – Data point defining a point in the dataset’s coordinate space and the new signal values at that point.
- Returns:
Validity of
data_point
, message- Return type:
bool, str
- init_nxdata()¶
Initialize an empty NeXus NXdata representing this dataset to
self.nxdata
; values for axes’NXfield
s are filled out, values for signals’NXfield
s are empty an can be filled out later. Save the empty NeXus NXdata object to the NeXus file. Initialiseself.nxfile
andself.nxdata_path
with theNXFile
object and actual nxpath used to save and make updates to the Nexus NXdata object.- Returns:
None
- update_nxdata(data_point)¶
Update
self.nxdata
’s NXfield values.- Parameters:
data_point (dict[str, object]) – Data point defining a point in the dataset’s coordinate space and the new signal values at that point.
- Returns:
None
- get_index(data_point)¶
Return a tuple representing the array index of
data_point
in the coordinate space of the dataset.- Parameters:
data_point (dict[str, object]) – Data point defining a point in the dataset’s coordinate space.
- Returns:
Multi-dimensional index of
data_point
in the dataset’s coordinate space.- Return type:
tuple
- class CHAP.common.processor.UpdateNXdataProcessor¶
Bases:
CHAP.Processor
Processor to fill in part(s) of a NeXus NXdata representing a structured dataset that’s already been written to a NeXus file.
This Processor is most useful as an “update” step for a NeXus NXdata object created by
common.SetupNXdataProcessor
, and is most easy to use in aPipeline
immediately after anotherPipelineItem
designed specifically to return a value that can be used as input to thisProcessor
.Example of use in a
Pipeline
configuration:config: inputdir: /rawdata/samplename pipeline: - edd.UpdateNXdataReader: spec_file: spec.log scan_number: 1 - common.SetupNXdataProcessor: nxfilename: /reduceddata/samplename/data.nxs nxdata_path: /entry/samplename_dataset_1
Initialization
Constructor of PipelineItem class
- process(data, nxfilename, nxdata_path, data_points=[], allow_approximate_coordinates=True)¶
Write new data points to the signal fields of an existing NeXus NXdata object representing a structued dataset in a NeXus file. Return the list of data points used to update the dataset.
- Parameters:
data (list[PipelineData]) – Data from the previous item in a
Pipeline
. May contain a list of data points that will extend the list of data points optionally provided with thedata_points
argument.nxfilename (str) – Name of the NeXus file containing the NeXus NXdata object to update.
nxdata_path (str) – The path to the NeXus NXdata object to update in the file.
data_points (list[dict[str, object]]) – List of data points, each one a dictionary whose keys are the names of the coordinates and axes, and whose values are the values of each coordinate / signal at a single point in the dataset. Deafults to [].
allow_approximate_coordinates (bool, optional) – Parameter to allow the nearest existing match for the new data points’ coordinates to be used if an exact match connot be found (sometimes this is due simply to differences in rounding convetions). Defaults to True.
- Returns:
Complete list of data points used to update the dataset.
- Return type:
list[dict[str, object]]
- class CHAP.common.processor.NXdataToDataPointsProcessor¶
Bases:
CHAP.Processor
Transform a NeXus NXdata object into a list of dictionaries. Each dictionary represents a single data point in the coordinate space of the dataset. The keys are the names of the signals and axes in the dataset, and the values are a single scalar value (in the case of axes) or the value of the signal at that point in the coordinate space of the dataset (in the case of signals – this means that values for signals may be any shape, depending on the shape of the signal itself).
Example of use in a pipeline configuration:
config: inputdir: /reduceddata/samplename - common.NXdataReader: name: data axes_names: - x - y signal_name: z nxfield_params: - filename: data.nxs nxpath: entry/data/x slice_params: - step: 2 - filename: data.nxs nxpath: entry/data/y slice_params: - step: 2 - filename: data.nxs nxpath: entry/data/z slice_params: - step: 2 - step: 2 - common.NXdataToDataPointsProcessor - common.UpdateNXdataProcessor: nxfilename: /reduceddata/samplename/sparsedata.nxs nxdata_path: /entry/data
Initialization
Constructor of PipelineItem class
- process(data)¶
Return a list of dictionaries representing the coordinate and signal values at every point in the dataset provided.
- Parameters:
data (list[PipelineData]) – Input pipeline data containing a NeXus NXdata object.
- Returns:
List of all data points in the dataset.
- Return type:
list[dict[str,object]]
- class CHAP.common.processor.XarrayToNexusProcessor¶
Bases:
CHAP.Processor
A Processor to convert the data in an
xarray
structure to a NeXus NXdata object.Initialization
Constructor of PipelineItem class
- process(data)¶
Return
data
represented as a NeXus NXdata object.- Parameters:
data (Union[xarray.DataArray, xarray.Dataset]) – The input
xarray
structure.- Returns:
The data and metadata in
data
.- Return type:
nexusformat.nexus.NXdata
- class CHAP.common.processor.XarrayToNumpyProcessor¶
Bases:
CHAP.Processor
A Processor to convert the data in an
xarray.DataArray
structure to annumpy.ndarray
.Initialization
Constructor of PipelineItem class
- process(data)¶
Return just the signal values contained in
data
.- Parameters:
data (xarray.DataArray) – The input
xarray.DataArray
.- Returns:
The data in
data
.- Return type:
numpy.ndarray